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I.  SOFTWARE DESCRIPTION 
 
 
CAESIM is an advanced, general-purpose computational fluid dynamics (CFD) software 

system for simulating a wide range of fluid flow, heat transfer, and mass transfer 

problems including: 

 
Subsonic, transonic, and supersonic flow regimes  - Chemical reactions 

Mutli-phase -  Turbulence – Free Surface 

Conjugate heat transfer – Porous media – Moving body treatment 

 
The CAESIM software system is an integrated program suite providing the necessary 

tools for simulating real flows.  The system includes modules for geometry creation and 

grid generation, a three-dimensional Navier-Stokes equation solver, and advanced 

visualization. 

At the core of the system is a three-dimensional viscous flow solver that combines a 

strongly conservative finite-volume formulation with advanced features. Features such as 

collocated grids, high-order differencing schemes, and flexible user-accessible source 

code architecture produce a state-of -the-art CFD system that is powerful, efficient, and 

expandable. 

Storm is fast, efficient, and accurate. The finite-volume treatment of the equations in 

general curvilinear coordinates produces accurate results on any smoothly varying grid 

even in the presence of significant non-orthogonality. By utilizing the integral form of the 

equations, conservation is enforced exactly. The PISO algorithm (pressure-implicit with 

splitting of operators) produces superior steady state and transient solutions.  
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II.  VERIFICATION and VALIDATION PLAN 
 
 
The purpose of the Verification and Validation Plan is to ensure that the CAESIM 

software performs its intended function. 

 
The plan consists of two parts: 
 

A. Testing the CAESIM software to solve known analytical and test case problems 

B. Testing the CAESIM software against published experimental data 

 
 
For Part A, three problems were selected and solved: 
 

1. Radiation - Triangular Oven, Incropera F.P. & DeWitt D.P., Fundamentals of 
Heat Transfer, Chap. 13, pp. 660-664, John Wiley & Sons, 1981. 

2. 1-D Conjugate Heat Transfer, analytical solution. 

3. Free Convection in a Square Cavity, Davis, de Vahl and Jones, “Natural 
convection in a square cavity:  a comparison exercise, Int. Journal for Numerical 
Methods in Fluids, 3, 1983. 

 

For Part B, two problems were selected and solved: 

 

4. Los Alamos Nuclear Storage Facility, Bernardin J.D. et al, CFD Analysis and 
experimental investigation associated with the design of the Los Alamos nuclear 
material storage facility, FEDSM ’97, 1997. 

5. Turbulent Circular Jet:  2-D Axisymmetric Analysis, Hinze J.O., Turbulence, 
Chap. 6, pp. 534-540, McGraw-Hill, 1975. 
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III.  VERIFICATION and VALIDATION RESULTS 
 
 

The results from the (5) selected CAESIM validation simulations are presented in the 

following sections.  Individual write-ups and reference data are provided.  All results 

compare favorably and confirm that CAESIM functions as designed.   
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Problem 1.  Triangular Oven - Radiation 
 
 
Introduction 
 
Radiative heat transfer characteristics are studied for a paint brick oven in the form of a 

long triangular duct in which one surface is maintained at an elevated temperature and 

one other surface is insulated. Painted panels occupy the third surface and are maintained 

at a constant temperature. For validation purposes, the steady-state temperature of the 

insulated (i.e. adiabatic) surface is compared with an existing analytical solution [1].  

 
 
Numerical Model 
 
The numerical model is defined as follow: 
 
- Flow Domain: 2-D Equilateral triangular cross-section, Side = 1m 
   Grid of 2048 cells (64 cells along one side) 
 
- Radiation Properties and Boundary Conditions 
 

Side 1:   = 0.8 ,  T = 1200 K (fixed temperature) 
Side 2:   = 0.4 ,  T = 500 K (fixed temperature) 
Side 3:   = 0.8 ,  Adiabatic surface (heat flux = 0) 

 
The view factor model is used to predict radiative heat exchanges between the three 
surfaces of the triangular oven. 
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Figure 1. Numerical model – geometry, grid and boundary conditions. 
 
 
 
Results 
 
Based on the radiation properties of each side of the triangular oven, the analytical 

solution yields a temperature of 1102 K for the insulated surface. The figure below shows 

a comparison between the analytical value and the computed solution for the temperature 

along the insulated side of the equilateral triangle: 
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Figure 2. Comparison between numerical and analytical solutions. 
 

 
Considering that one of the major assumptions to derive the analytical solution is to 

neglect end effects (i.e. constant temperature on the surface), the numerical results show 

excellent accuracy in predicting the average temperature on the insulated surface. They 

also demonstrate the influence of the end regions where the temperature is biased towards 

the constant value imposed on the adjacent side of the triangle (i.e. T = 500K at lower 

end and T = 1200K at higher end). 

 
References 
 
[1] Incropera F.P & DeWitt D.P., Fundamentals of Heat Transfer, Chap. 13, pp. 660-664, 
John Wiley & Sons, 1981. 
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Problem 2.  1-D Conjugate Heat Transfer 
 
 
Introduction 
 
Conjugate heat transfer exists when one (or more) fluid-solid interface is present in the 

computational domain. The simplest case of conjugate heat transfer occurs when only 

conduction is considered on both side of the fluid-solid interface. In this instance, the 

temperature distribution in the computational domain is dictated solely by the thermal 

conductivity of each material. If a one-dimensional temperature gradient is applied across 

the computational domain (i.e. fixed wall temperatures at opposite boundaries), the 

temperature distributions in both fluid and solid are linear with slopes inversely 

proportional to the ratio of the thermal conductivities. 

 
 
Numerical Model 
 
The numerical model is defined as follow: 
 
Flow Domain:   1-D tube of length 2m 

(solid from x=0m to x=1m, fluid from x=1m to x=2m) 
    Grid of 40 cells in x-dir. (20 solid cells + 20 fluid cells) 
 
Fluid Properties (SI):  ρ = 1 ,  μ = 1 ,  cp = 1 ,  β = 1 
    k  =  0.5 
 
Solid Properties (SI):  ρ = 1 ,  cp = 1 
    k  =  1 
 
Boundary Conditions:  u  = 0 , T = 500K  @  x = 0 
    u  = 0 , T = 350K  @  x = 2 
    
Initial Conditions:  u = 0 , Tsolid = 500K , Tfluid = 350K  @  t = 0 
 
For validation purposes, the thermal conductivity of the solid is twice the conductivity of 

the fluid so, based on the initial conditions, the temperature at the fluid-solid interface is 

expected to be 450K. 
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Note: to enforce pure conduction (i.e. no forced of free convection) in the fluid, only the 

energy (i.e. temperature) equation is solved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Numerical model - geometry, grid and boundary conditions. 

 

Results 
 
The numerical results are compared with the 1-D analytical solution based on the heat 

transfer balance at fluid-solid interface derived as follow: 

 
kf * (Ti – Tf,w) = ks * (Ts,w – Ti) 

 
where Tf,w and Ts,w are the temperature at the wall boundaries and Ti the temperature at 

the fluid-solid interface. kf and ks are the fluid and solid thermal conductivity. Solving for 

the temperature at the fluid-solid interface: 

 
Ti = (ksTs,w+kfTf,w) / (ks+kf) 
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Introducing Tf,w = 350K, Ts,w = 500K and ks = 2kf , the temperature at the interface 

becomes: 

 
Ti = 450K 

 
The numerical results replicate exactly the analytical solution as they show a temperature 

of 450K at the solid-fluid interface and slope change factor of 2 between the solid and the 

fluid materials. 
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Figure 2. Temperature distribution in solid and fluid materials. 
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Problem 3.  Free Convection in a Square Cavity 
 
 
Introduction 
 
In free convection, the flow is driven by temperature gradients small enough so that the 

Boussinesq approximation can be used for buoyancy forces. Free convection effects are 

characterized by a non-dimensional parameter, the Rayleigh number, representing the 

ratio of buoyancy forces and viscous forces:         

 
where   = 1/T  is the coefficient of volumetric expansion, g  is gravity,  is density,  Cp 

is the specific heat, b is the characteristic length ( the size of the cavity), T1 and T2 are the 

characteristic temperatures that drive the buoyancy flow ( left and right wall temperature, 

respectively ), k is the conductivity of the fluid and   is the viscosity. 

 
 
Numerical Model 
 
Using a non-dimensional formulation, the free convection flow is determined uniquely by 

the Rayleigh number with the characteristics of the numerical model defined as follow: 

 
Flow Domain:   2-D square cavity of 1x1 dimensions 
    Grid of 50x50 cells w/ clustering factor (1.6) near walls 
 
Fluid Properties:  ρ =   1 
    μ =   sqrt(Pr/Ra)  (Prandtl number: Pr = 0.71) 
    cp =   sqrt(Ra*Pr) (Prandtl number: Pr = 0.71) 
    k  =    1 
    β =    1 
 
Boundary Conditions:  u = v = 0 , T = 0  @  x = 0 
    u = v = 0 , T = 1  @  x = 1 
    u = v = 0 , Flux = 0  @  y = 0 and y = 1 
 
Initial Conditions:  u = v = 0 , T = 0  @  t = 0 





k

TTbpCg
Ra

)21(32 

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For validation purposes, two different Rayleigh numbers (1,000 and 100,000) are 

simulated and compared with published reference data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Numerical model – geometry, grid and boundary conditions. 

 

 

Results 
 
The results are presented in terms of the non-dimensional velocities and Nusselt number 

(non-dimensional heat transfer) defined as follow: 

 
U* = u*Uref  ,  V* = v*Uref     where  Uref = sqrt(Ra*Pr) 

 
U*max is defined as the maximum velocity in the x-direction at x = 0.5 and, similarly, 

V*max is the maximum velocity in the y-direction at y = 0.5. 

 
The Nusselt number is defined as the non-dimensional temperature gradient in the x-

direction at x = 0.98. 
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Ra = 1000 Storm Davis Relative Error 
U*max 3.620 3.634 - 0.4 % 
V*max 3.716 3.679 1.0 % 
Numax 1.568 1.501 4.5 % 
Numin 0.730 0.694 5.2 % 

 
Table 1. Non-dimensional results comparison, Rayleigh number = 1,000 

 
 

Ra = 100,000 Storm Davis Relative Error 
U*max 34.07 34.81 - 0.3 % 
V*max 68.67 68.22 1.0 % 
Numax 7.797 7.761 0.5 % 
Numin 0.735 0.736 - 0.1 % 

 
Table 2. Non-dimensional results comparison, Rayleigh number = 100,000 

 
 
The results for both Rayleigh numbers show excellent agreement with the reference data 

published by Davis [1]. Temperature contours and velocity vectors for both cases are 

presented in Appendix A. 

 
 
Reference 
 
[1] Davis, de Vahl and Jones, “Natural convection in a square cavity: a comparison 
exercise”, Int. Journal for Numerical Methods in Fluids, 3, 1983. 
 



Adaptive Research                                              www.caesims.com                                              sales@caesims.com 
 

 13

Appendix A 

 
Figure A1. Temperature Contours, Ra = 1,000. 

 
Figure A2. Velocity Vectors, Ra = 1,000. 
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Figure A3. Temperature Contours, Ra = 100,000. 

 
Figure A4. Velocity Vectors, Ra = 100,000. 
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Problem 4.  Los Alamos Nuclear Storage Facility 
 
 
Introduction 
 
A detailed experimental study of the Los Alamos nuclear storage facility was performed 

in 1997 by Bernardin et al. [1] to assess the cooling efficiency of the airflow inside and 

outside a storage pipe that can hold 14 fuel canisters. Since each of the canisters is 

designed to generate at most 15W of thermal energy, the total heat dissipated by the 

nuclear fuel is 210W. The heat generated by the canisters induces a buoyant flow inside 

the storage pipe. The heat absorbed by the pipe from free convection and radiation will in 

turn drive a natural convection airflow on the outside of the storage unit. The pipe is also 

expected to loose heat to the outside walls of the facility through radiation. 

 

Reproducing the entire geometry of the storage facility would be beyond the scope of this 

validation effort and therefore some simplifications were made to the numerical model. 

The main assumption is that for the non-forced airflow case as described in Bernardin et 

al., the problem can be treated as symmetric for a 90 degrees section of the canister and 

storage pipe. Also, while turbulent effects in the flow are taken into account with the use 

of a standard k- model, the influence of wall roughness is globally neglected. Preliminary 

work clearly demonstrated that the assumption of laminar flow is not accurate and 

turbulent regime has to be considered to properly model heat transfer characteristics. 

With the current modifications, the overall numerical solution is expected to produce 

qualitatively correct physical behavior, but may show slight discrepancies when 

compared directly to the results presented in the literature. 

 

Numerical Model 

 
After simplifications, the final geometry is a 90 degrees section of the original 

configuration with one side coincident to the vertical symmetry plane and the other one 

normal to it and through the center of the middle canister. The boundary conditions on 
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the two symmetry planes and on the outside wall have been adjusted to reproduce the free 

convection and radiation characteristics of the whole system. A complete description of 

the numerical model is given below: 

 
- Flow Domain 
 
 Geometry: Canister diameter = 0.127 m 
   Storage pipe outer diameter = 0.457 m 
   Storage pipe wall thickness = 0.013 m 
   Storage pipe to outside wall distance = 0.0765 m 
   Storage unit total height = 4.458 m 
 
- Computational Grid 
 
 Radial direction: 10 (int. air) + 3 (pipe) + 6 (ext. air) = 19 cells 
 Circ. direction: 12 cells 
 Vertical direction: 50 cells 
 Total grid size: 19 x 12 x 50 = 11,400 cells  
 
- Material Properties 
 
 Air:  Ideal gas law, Boussinesq approximation, Standard k- model 
 Storage Pipe:  Stainless steel 
 
- Boundary Conditions 
 

Canister wall: heat flux = 118 W/m2, emissivity = 0.3, no slip 
Storage pipe: emissivity = 0.75, no slip 
Outside wall: emissivity = 0.1, no slip 
 

- Initial Conditions 
 
 Internal air: T = 310K, u = v = w = 0 
 External air: T = 295K, u = v = w = 0 
 
A view factor model is used to predict radiative heat exchanges between the different 

surfaces of the canister, storage pipe and outside wall. 
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Figure 1. Numerical model – geometry and grid. 
 
 
 
 
Results 
 
The results are presented in terms of the vertical temperature distribution on the canister 

surface, in the internal air and in the storage pipe. They are compared with the 

experimental and numerical data reported in Bernardin et al. for their 1997 analysis of the 

Los Alamos nuclear materials storage facility. 
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Figure 2. Comparison between numerical and experimental temperatures. 

 

The results show a good agreement between the numerical simulations for the storage 

pipe walls. The discrepancies appearing on the canister surface temperatures have been 

documented by Bernardin et al. (c.f. Attachment I) and can be mainly attributed to 

slightly different heat inputs from the canisters between the numerical models and the 

experimental configuration: 

 

“The differences in the numerical and experimental canister surface temperatures were 

discovered to lie in the method used to model the canister geometry. In the numerical 

model, the series of canisters was modeled as a continuous pipe with a uniform heat flux 

provided by 210W of input energy. While the same 210W was supplied to the canister in 

the experiment, the surface area over which the heat was dissipated was different than 

that used in the model since the canisters were separated by a 5.08cm (2.0in) gap. 

Assuming that the heat was dissipated solely by the outer side surface of the canisters in 
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the experiment, then 20% less surface area would be available to dissipate the 210W of 

thermal energy in the experiment compared to the model. This indicates then that a 80% 

lower heat flux exists in the numerical model, and hence predicted canister surface 

temperatures would be significantly less than experimental values.” (Bernardin et al.) 

 

Considering the assumptions and simplifications introduced in the numerical model, the 

results obtained with Storm demonstrate its ability to predict accurately the effects of 

combined free convection, conjugate and radiative heat transfer in a complex 3-D case. 

 
 
Reference 
 
Bernardin J.D. et al., CFD Analysis and experimental investigation associated with the 
design of the Los Alamos nuclear material storage facility, FEDSM’97, 1997. 
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Problem 5.  Turbulent Circular Jet: 2-D Axismmetric Analysis 
 
 
Introduction 
 
The study of a turbulent circular jet issuing in a still ambient fluid has been the subject of 

many numerical and experimental investigation. A similarity solution for the flow rate in 

the wake of the jet is also available, which makes the jet analysis an excellent validation 

problem for high speed turbulent flows. 

 
 
Numerical Model 
 
Since the jet is circular, the assumption is made to treat the problem as 2-D axisymmetric 

and the geometry is simplified accordingly. Turbulent effects are accounted for by using 

a standard k- model. 

 
- Flow Domain  
 
 Geometry: 2-D Axisymmetric region 1.0’’ long by 0.1’’ wide 
 
- Computational Grid 
 
 Axial direction: 20 cells from z = 0.00’’ to z = 0.15’’ 
    40 cells from z = 0.15’’ to z = 0.50’’ 
    25 cells from z = 0.50’’ to z = 1.00’’ 
 Radial direction: 64 cells 
 Circ. direction: axisymmetric (i.e. 1 cell) 
 Total grid size: (20+40+25) x 64 = 5440 cells 
 
- Fluid Properties 
 
 Water:   = 1000 kg/m3 ,   = 8.0e-4 m2/s 
   Standard k- turbulence model 
 
- Inlet Boundary Conditions 
 
 Velocity: Uz = 101.5 m/s, Ur = 0 m/s 
 Turbulence: k = 0.02 m2/s2,  = 0.02 m2/s3 
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Figure 1. Numerical model – geometry and grid. 
 
 
 
Results 
 
The results are presented in terms of the flow rate for the self-preserving region of the 

wake and of normalized velocity profiles across the jet in the radial direction. Theses 

values can be directly compared to analytical and experimental results for axisymmetric 

wall jets reported in the literature [1]. 

 
- Flow Rate for Self-preserving Region 
 
Flow rate from similarity: Qz = 0.32*Qd*z/d 
 
Where  Qd = 10 cc/min 
  d =  0.0018 in 
 
 
Axial Location 

(in) 
Flow Rate CAESIM 

(cc/min) 
Flow Rate Similarity 

(cc/min) 
Relative Error 

(%) 
0.15 249 267 6.7 
0.50 933 889 4.9 

 
Table 1. Flow rates for self-preserving wake region. 
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- Normalized Velocity Profiles 
 
Normalized Jet Velocity:  U* = Uz / Uz,max  
Normalized Jet Radius:  r*  = r / z 
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Figure 1. Normalized velocity profile across jet. 
 
 
 
Reference 
 
[1] Hinze J.O., Turbulence, Chap. 6, pp. 534-540, McGraw-Hill, 1975. 
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Turbulent kinetic energy contours for axisymmetric jet. 

 


